Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542196

RESUMO

Resistance (R) genes were used to recognize pathogen effectors directly or indirectly in plants and activate defense signal pathways. Most of these R proteins consist of a nucleotide-binding adaptor (NB-ARC) domain, a leucine-rich repeat (LRR) domain and some also have a coiled-coil (CC) structure. In this study, we cloned a gene which encodes the CC-NB-ARC-LRR R protein (VqCNL) from Chinese wild grapevine Vitis. quinquangularis accession 'Dan-2'. The transcript of VqCNL was obviously induced by inoculation with Plasmopara viticola and the salicylic acid (SA) treatment. The results of sequence analysis showed that the VqCNL gene contained a CC domain at the N-terminus, along with an NB-ARC and an LRR domain at the C-terminus. We transferred this gene into wildtype Arabidopsis and treated transgenic lines with Hyaloperonospora arabidopsidis (Hpa) and Pseudomonas syringae pv. tomato DC3000 (Pst DC3000); the results demonstrated that VqCNL promotes broad spectrum resistance to pathogens. Furthermore, qPCR analysis displayed that VqCNL may display a significant function in disease resistance via activating SA signaling pathways. In general, these conclusions primarily demonstrated that VqCNL enhances the disease resistance level in plants and contributes to future research of the R gene identification for grape breeding biotechnology.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oomicetos , Vitis , Arabidopsis/metabolismo , Vitis/metabolismo , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Oomicetos/metabolismo , Bactérias/metabolismo , China , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
2.
mSystems ; 9(1): e0100423, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38078741

RESUMO

Oomycetes are fungus-like eukaryotic microorganisms which can cause catastrophic diseases in many plants. Successful infection of oomycetes depends highly on their effector proteins that are secreted into plant cells to subvert plant immunity. Thus, systematic identification of effectors from the oomycete proteomes remains an initial but crucial step in understanding plant-pathogen relationships. However, the number of experimentally identified oomycete effectors is still limited. Currently, only a few bioinformatics predictors exist to detect potential effectors, and their prediction performance needs to be improved. Here, we used the sequence embeddings from a pre-trained large protein language model (ProtTrans) as input and developed a support vector machine-based method called POOE for predicting oomycete effectors. POOE could achieve a highly accurate performance with an area under the precision-recall curve of 0.804 (area under the receiver operating characteristic curve = 0.893, accuracy = 0.874, precision = 0.777, recall = 0.684, and specificity = 0.936) in the fivefold cross-validation, considerably outperforming various combinations of popular machine learning algorithms and other commonly used sequence encoding schemes. A similar prediction performance was also observed in the independent test. Compared with the existing oomycete effector prediction methods, POOE provided very competitive and promising performance, suggesting that ProtTrans effectively captures rich protein semantic information and dramatically improves the prediction task. We anticipate that POOE can accelerate the identification of oomycete effectors and provide new hints to systematically understand the functional roles of effectors in plant-pathogen interactions. The web server of POOE is freely accessible at http://zzdlab.com/pooe/index.php. The corresponding source codes and data sets are also available at https://github.com/zzdlabzm/POOE.IMPORTANCEIn this work, we use the sequence representations from a pre-trained large protein language model (ProtTrans) as input and develop a Support Vector Machine-based method called POOE for predicting oomycete effectors. POOE could achieve a highly accurate performance in the independent test set, considerably outperforming existing oomycete effector prediction methods. We expect that this new bioinformatics tool will accelerate the identification of oomycete effectors and further guide the experimental efforts to interrogate the functional roles of effectors in plant-pathogen interaction.


Assuntos
Oomicetos , Oomicetos/metabolismo , Proteínas Fúngicas/genética , Software , Plantas/metabolismo , Idioma
3.
Cell Rep ; 42(11): 113391, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37930886

RESUMO

Protein homeostasis is vital for organisms and requires chaperones like the conserved Bcl-2-associated athanogene (BAG) co-chaperones that bind to the heat shock protein 70 (HSP70) through their C-terminal BAG domain (BD). Here, we show an unconventional BAG subfamily exclusively found in oomycetes. Oomycete BAGs feature an atypical N-terminal BD with a short and oomycete-specific α1 helix (α1'), plus a C-terminal small heat shock protein (sHSP) domain. In oomycete pathogen Phytophthora sojae, both BD-α1' and sHSP domains are required for P. sojae BAG (PsBAG) function in cyst germination, pathogenicity, and unfolded protein response assisting in 26S proteasome-mediated degradation of misfolded proteins. PsBAGs form homo- and heterodimers through their unique BD-α1' to function properly, with no recruitment of HSP70s to form the common BAG-HSP70 complex found in other eukaryotes. Our study highlights an oomycete-exclusive protein homeostasis mechanism mediated by atypical BAGs, which provides a potential target for oomycete disease control.


Assuntos
Proteínas de Choque Térmico HSP70 , Oomicetos , Proteínas de Choque Térmico HSP70/metabolismo , Proteostase , Virulência , Chaperonas Moleculares/metabolismo , Oomicetos/metabolismo
4.
Nat Commun ; 14(1): 3621, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336953

RESUMO

The Arabidopsis thaliana Receptor-Like Protein RLP30 contributes to immunity against the fungal pathogen Sclerotinia sclerotiorum. Here we identify the RLP30-ligand as a small cysteine-rich protein (SCP) that occurs in many fungi and oomycetes and is also recognized by the Nicotiana benthamiana RLP RE02. However, RLP30 and RE02 share little sequence similarity and respond to different parts of the native/folded protein. Moreover, some Brassicaceae other than Arabidopsis also respond to a linear SCP peptide instead of the folded protein, suggesting that SCP is an eminent immune target that led to the convergent evolution of distinct immune receptors in plants. Surprisingly, RLP30 shows a second ligand specificity for a SCP-nonhomologous protein secreted by bacterial Pseudomonads. RLP30 expression in N. tabacum results in quantitatively lower susceptibility to bacterial, fungal and oomycete pathogens, thus demonstrating that detection of immunogenic patterns by Arabidopsis RLP30 is involved in defense against pathogens from three microbial kingdoms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oomicetos , Arabidopsis/metabolismo , Cisteína/metabolismo , Ligantes , Proteínas/metabolismo , Oomicetos/metabolismo , Bactérias/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Trends Plant Sci ; 28(9): 1045-1059, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37062674

RESUMO

Both pathogenic and symbiotic microorganisms modulate the immune response and physiology of their host to establish a suitable niche. Key players in mediating colonization outcome are microbial effector proteins that act either inside (cytoplasmic) or outside (apoplastic) the plant cells and modify the abundance or activity of host macromolecules. We compile novel insights into the much-disputed processes of effector secretion and translocation of filamentous organisms, namely fungi and oomycetes. We report how recent studies that focus on unconventional secretion and effector structure challenge the long-standing image of effectors as conventionally secreted proteins that are translocated with the aid of primary amino acid sequence motifs. Furthermore, we emphasize the potential of diverse, unbiased, state-of-the-art proteomics approaches in the holistic characterization of fungal and oomycete effectomes.


Assuntos
Oomicetos , Oomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Motivos de Aminoácidos , Doenças das Plantas/microbiologia , Interações Hospedeiro-Patógeno , Fungos/metabolismo
6.
Curr Opin Microbiol ; 72: 102284, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36868049

RESUMO

In plant-microbe interactions, symbionts and pathogens live within plants and attempt to avoid triggering plant defense responses. In order to do so, these microbes have evolved multiple mechanisms that target components of the plant cell nucleus. Rhizobia-induced symbiotic signaling requires the function of specific legume nucleoporins within the nuclear pore complex. Symbiont and pathogen effectors harbor nuclear localization sequences that facilitate movement across nuclear pores, allowing these proteins to target transcription factors that function in defense. Oomycete pathogens introduce proteins that interact with plant pre-mRNA splicing components in order to alter host splicing of defense-related transcripts. Together, these functions indicate that the nucleus is an active site of symbiotic and pathogenic functioning in plant-microbe interactions.


Assuntos
Oomicetos , Simbiose , Oomicetos/metabolismo , Plantas/metabolismo , Splicing de RNA , Núcleo Celular
7.
Mol Plant Microbe Interact ; 36(7): 397-410, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36853198

RESUMO

Oomycete plant pathogens cause a wide variety of diseases, including late blight of potato, sudden oak death, and downy mildews of plants. These pathogens are major contributors to loss in numerous food crops. Oomycetes secrete effector proteins to manipulate their hosts to the advantage of the pathogen. Plants have evolved to recognize effectors, resulting in an evolutionary cycle of defense and counter-defense in plant-microbe interactions. This selective pressure results in highly diverse effector sequences that can be difficult to computationally identify using only sequence similarity. We developed a novel effector prediction tool, EffectorO, that uses two complementary approaches to predict effectors in oomycete pathogen genomes: i) a machine learning-based pipeline that predicts effector probability based on the biochemical properties of the N-terminal amino-acid sequence of a protein and ii) a pipeline based on lineage specificity to find proteins that are unique to one species or genus, a sign of evolutionary divergence due to adaptation to the host. We tested EffectorO on Bremia lactucae, which causes lettuce downy mildew, and Phytophthora infestans, which causes late blight of potato and tomato, and predicted many novel effector candidates while recovering the majority of known effector candidates. EffectorO will be useful for discovering novel families of oomycete effectors without relying on sequence similarity to known effectors. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Oomicetos , Peronospora , Phytophthora infestans , Oomicetos/genética , Oomicetos/metabolismo , Proteínas/metabolismo , Genoma , Evolução Biológica , Plantas/metabolismo , Phytophthora infestans/genética , Doenças das Plantas
8.
Semin Cell Dev Biol ; 148-149: 42-50, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36670035

RESUMO

Downy mildews are obligate oomycete pathogens that attack a wide range of plants and can cause significant economic impacts on commercial crops and ornamental plants. Traditionally, downy mildew disease control relied on an integrated strategies, that incorporate cultural practices, deployment of resistant cultivars, crop rotation, application of contact and systemic pesticides, and biopesticides. Recent advances in genomics provided data that significantly advanced understanding of downy mildew evolution, taxonomy and classification. In addition, downy mildew genomics also revealed that these obligate oomycetes have reduced numbers of virulence factor genes in comparison to hemibiotrophic and necrotrophic oomycetes. However, downy mildews do deploy significant arrays of virulence proteins, including so-called RXLR proteins that promote virulence or are recognized as avirulence factors. Pathogenomics are being applied to downy mildew population studies to determine the genetic diversity within the downy mildew populations and manage disease by selection of appropriate varieties and management strategies. Genome editing technologies have been used to manipulate host disease susceptibility genes in different plants including grapevine and sweet basil and thereby provide new soucres of resistance genes against downy mildews. Previously, it has proved difficult to transform and manipulate downy mildews because of their obligate lifestyle. However, recent exploitation of RNA interference machinery through Host-Induced Gene Silencing (HIGS) and Spray-Induced Gene Silencing (SIGS) indicate that functional genomics in downy mildews is now possible. Altogether, these breakthrough technologies and attendant fundamental understanding will advance our ability to mitigate downy mildew diseases.


Assuntos
Oomicetos , Oomicetos/genética , Oomicetos/metabolismo , Genômica , Plantas , Virulência/genética
9.
New Phytol ; 237(2): 532-547, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35838065

RESUMO

The oomycete Albugo candida causes white blister rust, an important disease of Brassica crops. Distinct races of A. candida are defined by their capacity to infect different host plant species. Each A. candida race encodes secreted proteins with a CX2 CX5 G ('CCG') motif that are polymorphic and show presence/absence variation, and are therefore candidate effectors. The White Rust Resistance 4 (WRR4) locus in Arabidopsis thaliana accession Col-0 contains three genes that encode intracellular nucleotide-binding domain leucine-rich repeat immune receptors. The Col-0 alleles of WRR4A and WRR4B confer resistance to multiple A. candida races, although both WRR4A and WRR4B can be overcome by the Col-0-virulent race 4 isolate AcEx1. Comparison of CCG candidate effectors in avirulent and virulent races, and transient co-expression of CCG effectors from four A. candida races in Nicotiana sp. or A. thaliana, revealed CCG effectors that trigger WRR4A- or WRR4B-dependent hypersensitive responses. We found eight WRR4A-recognised CCGs and four WRR4B-recognised CCGs, the first recognised proteins from A. candida for which the cognate immune receptors in A. thaliana are known. This multiple recognition capacity potentially explains the broad-spectrum resistance to several A. candida races conferred by WRR4 paralogues. We further show that of five tested CCGs, three confer enhanced disease susceptibility when expressed in planta, consistent with A. candida CCG proteins being effectors.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica , Oomicetos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas NLR/metabolismo , Brassica/metabolismo , Oomicetos/metabolismo , Doenças das Plantas/genética
10.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36362353

RESUMO

Newer effectorome prediction algorithms are considering effectors that may not comply with the canonical characteristics of small, secreted, cysteine-rich proteins. The use of effector-related motifs and domains is an emerging strategy for effector identification, but its use has been limited to individual species, whether oomycete or fungal, and certain domains and motifs have only been associated with one or the other. The use of these strategies is important for the identification of novel, non-canonical effectors (NCEs) which we have found to constitute approximately 90% of the effectoromes. We produced an algorithm in Bash called WideEffHunter that is founded on integrating three key characteristics: the presence of effector motifs, effector domains and homology to validated existing effectors. Interestingly, we found similar numbers of effectors with motifs and domains within two different taxonomic kingdoms: fungi and oomycetes, indicating that with respect to their effector content, the two organisms may be more similar than previously believed. WideEffHunter can identify the entire effectorome (non-canonical and canonical effectors) of oomycetes and fungi whether pathogenic or non-pathogenic, unifying effector prediction in these two kingdoms as well as the two different lifestyles. The elucidation of complete effectoromes is a crucial step towards advancing effectoromics and disease management in agriculture.


Assuntos
Oomicetos , Doenças das Plantas , Doenças das Plantas/microbiologia , Plantas/metabolismo , Oomicetos/metabolismo , Fungos , Algoritmos
11.
Plant Cell Rep ; 41(12): 2341-2350, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36348066

RESUMO

KEY MESSAGE: Expression of the VaRPP13 in Arabidopsis and tobacco enhanced resistance to oomycete pathogens, and this enhancement is closely related to the activation of salicylic acid (SA) signaling pathway. Resistance (R) genes, which usually contain a nucleotide-binding site and a leucine-rich repeat (NBS-LRR) domain, play crucial roles in disease resistance. In this study, we cloned a CC-NBS-LRR gene VaRPP13 from Vitis amurensis 'Shuang Hong' grapevine, and investigated its function on disease resistance. VaRPP13 expression was induced by Plasmopara viticola, an oomycetes pathogen causing downy mildew disease in grapevine. Heterologous expression VaRPP13 could also enhance resistance to Hyaloperonospora arabidopsidis in Arabidopsis thaliana and Phytophthora capsici in Nicotiana benthamiana, both oomycete pathogens. Further study indicated that VaRPP13 could enhance the expression of genes in SA signal pathway, while exogenous SA could also induce the expression of VaRPP13. In conclusion, our studies demonstrated that VaRPP13 contributes to a broad-spectrum resistance to oomycetes via activating SA signaling pathway.


Assuntos
Arabidopsis , Oomicetos , Phytophthora , Vitis , Resistência à Doença/genética , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Oomicetos/genética , Oomicetos/metabolismo , /metabolismo , Vitis/genética , Vitis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Transdução de Sinais/genética , Regulação da Expressão Gênica de Plantas
12.
Mol Plant Pathol ; 23(12): 1783-1791, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36103373

RESUMO

The phytohormone abscisic acid (ABA) regulates cell growth and plant development, and contributes to defence responses to pathogens. We previously showed that the Arabidopsis malectin-like domain leucine-rich repeat receptor-like kinase (MLD-LRR-RLK) impaired oomycete susceptibility 1 (IOS1) attenuates ABA signalling during infection with the oomycete downy mildew pathogen Hyaloperonospora arabidopsidis. The exodomain of IOS1 with its MLD retains the receptor in the endoplasmic reticulum (ER), where it interacts with the ribophorin HAP6 to dampen a pathogen-induced ER stress response called the unfolded protein response (UPR). The down-regulation of both ABA and UPR signalling probably provides the pathogen with an advantage for infection. Here, we show that ABA-related phenotypes of the ios1-1 mutant, such as up-regulated expression of ABA-responsive genes and hypersensitivity to exogenous ABA application, were reverted by expression of the IOS1 exodomain in the mutant background. Furthermore, knockdown mutants for ER-resident HAP6 showed similarly reduced UPR and ABA signalling, indicating that HAP6 positively regulates both pathways. Our data suggest that the IOS1 exodomain and HAP6 contribute in the ER to the IOS1-mediated interference with ABA and UPR signalling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oomicetos , Peronospora , Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estresse do Retículo Endoplasmático , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/metabolismo , Peronospora/fisiologia , Oomicetos/metabolismo
13.
Proc Natl Acad Sci U S A ; 119(35): e2114064119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994659

RESUMO

Plants are resistant to most microbial species due to nonhost resistance (NHR), providing broad-spectrum and durable immunity. However, the molecular components contributing to NHR are poorly characterised. We address the question of whether failure of pathogen effectors to manipulate nonhost plants plays a critical role in NHR. RxLR (Arg-any amino acid-Leu-Arg) effectors from two oomycete pathogens, Phytophthora infestans and Hyaloperonospora arabidopsidis, enhanced pathogen infection when expressed in host plants (Nicotiana benthamiana and Arabidopsis, respectively) but the same effectors performed poorly in distantly related nonhost pathosystems. Putative target proteins in the host plant potato were identified for 64 P. infestans RxLR effectors using yeast 2-hybrid (Y2H) screens. Candidate orthologues of these target proteins in the distantly related non-host plant Arabidopsis were identified and screened using matrix Y2H for interaction with RxLR effectors from both P. infestans and H. arabidopsidis. Few P. infestans effector-target protein interactions were conserved from potato to candidate Arabidopsis target orthologues (cAtOrths). However, there was an enrichment of H. arabidopsidis RxLR effectors interacting with cAtOrths. We expressed the cAtOrth AtPUB33, which unlike its potato orthologue did not interact with P. infestans effector PiSFI3, in potato and Nicotiana benthamiana. Expression of AtPUB33 significantly reduced P. infestans colonization in both host plants. Our results provide evidence that failure of pathogen effectors to interact with and/or correctly manipulate target proteins in distantly related non-host plants contributes to NHR. Moreover, exploiting this breakdown in effector-nonhost target interaction, transferring effector target orthologues from non-host to host plants is a strategy to reduce disease.


Assuntos
Arabidopsis , Resistência à Doença , Especificidade de Hospedeiro , Doenças das Plantas , Proteínas de Plantas , Arabidopsis/metabolismo , Arabidopsis/parasitologia , Oomicetos/metabolismo , Phytophthora infestans/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/metabolismo , Solanum tuberosum/parasitologia , /parasitologia , Técnicas do Sistema de Duplo-Híbrido
14.
Gene ; 837: 146693, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35738444

RESUMO

Epigenetic regulation has recently gained prominence in the field of plant-pathogen interactions, providing a deeper understanding of the molecular mechanisms associated with plant infection. In grapevine interaction with pathogens, epigenetic regulation still remains a black box. In this work, we characterized grapevine DNA methyltransferase gene family and identified nine DNA methyltransferases genes across eight grapevine chromosomes coding for 17 proteins. We also assessed the modulation of global cytosine methylation and gene expression levels of these genes with the aim of establishing a connection between DNA methylation and grapevine resistance towards downy mildew. Our results revealed that, in the incompatible interaction, an early hypomethylation, coupled with downregulation of DNMT and CMT genes occurs very early after pathogen inoculation. Additionally, the compatible interaction is characterized by a hypermethylation at 6hpi. A temporal delay is evident between the shifts in DNA methyltransferases gene expression in both compatible and incompatible interactions which in turn may be reflected in the global methylation percentage. Overall, we present the first evidence of an epigenetic regulation role in grapevine defense against P. viticola.


Assuntos
Oomicetos , Vitis , DNA/metabolismo , Metilação de DNA , Resistência à Doença/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Metiltransferases/genética , Oomicetos/genética , Oomicetos/metabolismo , Doenças das Plantas/genética , Vitis/genética
15.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628165

RESUMO

Plant elicitors enhance plant defense against pathogen attacks by inducing systemic acquired resistance (SAR) with no or low direct fungicidal activity. Here we report the synthesis of a novel plant elicitor candidate LY5-24-2 [3,4-dichloro-N-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)isothiazole-5-carboxamide] and evaluation of its SAR inducing activity. Bioassays indicated that LY5-24-2 did not show significant anti-fungal activity but provided long-lasting resistance in Arabidopsis thaliana (A. thaliana) through promoting the accumulation of lignin, cellulose and pectin by 60.1%, 82.4% and 305.6%, respectively, at a concentration of 100 µM. LY5-24-2 also facilitated the closure of leaf stomata and increased the intracellular free Ca2+ by 47.8%, induced reactive oxygen species (ROS) accumulation, and inhibited the activity of ascorbate peroxidase (APX, EC 1.11.1.11) and catalase (CAT, EC 1.11.1.6) by 38.9% and 34.0%, respectively, as compared with the control at a concentration of 100 µM. LY5-24-2 induced SAR in plants and was dependent on the NPR1-mediated SA pathway by up-regulating expression of 2273 genes in A. thaliana. Meanwhile, LY5-24-2 also improved cucumber (Cucumis sativus L.) defense against Pseudoperonospora cubensis (P. cubensis) through promoting ROS accumulation and inhibiting activity of APX and CAT by 30.7% and 23.1%, respectively. Its expression of SA signaling genes CsNPR1, CsPR4 and CsPR5 was enhanced by 10.8, 5.8 and 6.6 times, respectively. These results demonstrated that LY5-24-2 is a novel elicitor candidate for plant protection via inducing SAR.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cucumis sativus , Oomicetos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cucumis sativus/genética , Oomicetos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
16.
J Plant Res ; 135(3): 501-515, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35426578

RESUMO

MAIN CONCLUSION: Grapevine aspartic proteases gene family is characterized and five VviAPs appear to be involved in grapevine defense against downy mildew. Grapevine (Vitis vinifera L.) is one of the most important crops worldwide. However, it is highly susceptible to the downy mildew disease caused by Plasmopara viticola (Berk. & Curt.) Berl. & De Toni. To minimize the use of fungicides used to control P. viticola, it is essential to gain a deeper comprehension on this pathosystem and proteases have gained particular interest in the past decade. Proteases were shown to actively participate in plant-pathogen interactions, not only in the processes that lead to plant cell death, stress responses and protein processing/degradation but also as components of the recognition and signalling pathways. The aim of this study was to identify and characterize the aspartic proteases (APs) involvement in grapevine defense against P. viticola. A genome-wide search and bioinformatics characterization of the V. vinifera AP gene family was conducted and a total of 81 APs proteins, coded by 65 genes, were found. VviAPs proteins can be divided into three categories, similar to those previously described for other plants. Twelve APs coding genes were selected, and expression analysis was conducted at several time-points after inoculation in both compatible and incompatible interactions. Five grapevine APs may be involved in grapevine tolerance against P. viticola. Our findings provide an overall understanding of the VviAPs gene family and establish better groundwork to further describe the roles of VviAPs in defense against P. viticola.


Assuntos
Oomicetos , Peronospora , Vitis , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Oomicetos/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Peronospora/metabolismo , Doenças das Plantas/genética , Vitis/genética
17.
Sci Adv ; 8(10): eabj9406, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275729

RESUMO

Microbial plant pathogens secrete a range of effector proteins that damage host plants and consequently constrain global food production. Necrosis and ethylene-inducing peptide 1-like proteins (NLPs) are produced by numerous phytopathogenic microbes that cause important crop diseases. Many NLPs are cytolytic, causing cell death and tissue necrosis by disrupting the plant plasma membrane. Here, we reveal the unique molecular mechanism underlying the membrane damage induced by the cytotoxic model NLP. This membrane disruption is a multistep process that includes electrostatic-driven, plant-specific lipid recognition, shallow membrane binding, protein aggregation, and transient pore formation. The NLP-induced damage is not caused by membrane reorganization or large-scale defects but by small membrane ruptures. This distinct mechanism of lipid membrane disruption is highly adapted to effectively damage plant cells.


Assuntos
Oomicetos , Lipídeos , Necrose , Oomicetos/metabolismo , Perforina/metabolismo , Plantas/metabolismo , Proteínas/metabolismo
18.
New Phytol ; 233(3): 1074-1082, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34705271

RESUMO

Oomycete phytopathogens have adapted to colonise plants using effectors as their molecular weapons. Intracellular effectors, mostly proteins but also small ribonucleic acids, are delivered by the pathogens into the host cell cytoplasm where they interfere with normal plant physiology. The diverse host processes emerging as 'victims' of these 'specialised bullets' include gene transcription and RNA-mediated silencing, cell death, protein stability, protein secretion and autophagy. Some effector targets are directly involved in defence execution, while others participate in fundamental metabolisms whose alteration collaterally affects defences. Other effector targets are susceptibility factors (SFs), that is host components that make plants vulnerable to pathogens. SFs are mostly negative regulators of immunity, but some seem necessary to sustain or promote pathogen colonisation.


Assuntos
Interações Hospedeiro-Patógeno , Oomicetos , Interações Hospedeiro-Patógeno/fisiologia , Oomicetos/metabolismo , Doenças das Plantas , Imunidade Vegetal , Plantas/metabolismo , Transporte Proteico , Proteínas/metabolismo
19.
Mol Plant Microbe Interact ; 35(2): 146-156, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34698534

RESUMO

Many fungi and oomycete species are devasting plant pathogens. These eukaryotic filamentous pathogens secrete effector proteins to facilitate plant infection. Fungi and oomycete pathogens have diverse infection strategies and their effectors generally do not share sequence homology. However, they occupy similar host environments, either the plant apoplast or plant cytoplasm, and, therefore, may share some unifying properties based on the requirements of these host compartments. Here, we exploit these biological signals and present the first classifier (EffectorP 3.0) that uses two machine-learning models: one trained on apoplastic effectors and one trained on cytoplasmic effectors. EffectorP 3.0 accurately predicts known apoplastic and cytoplasmic effectors in fungal and oomycete secretomes with low estimated false-positive rates of 3 and 8%, respectively. Cytoplasmic effectors have a higher proportion of positively charged amino acids, whereas apoplastic effectors are enriched for cysteine residues. The combination of fungal and oomycete effectors in training leads to a higher number of predicted cytoplasmic effectors in biotrophic fungi. EffectorP 3.0 expands predicted effector repertoires beyond small, cysteine-rich secreted proteins in fungi and RxLR-motif containing secreted proteins in oomycetes. We show that signal peptide prediction is essential for accurate effector prediction, because EffectorP 3.0 recognizes a cytoplasmic signal also in intracellular, nonsecreted proteins.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas Fúngicas , Oomicetos , Citoplasma/metabolismo , Proteínas Fúngicas/metabolismo , Fungos , Oomicetos/metabolismo , Doenças das Plantas/microbiologia , Plantas/microbiologia
20.
Mol Plant Pathol ; 23(6): 795-804, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34569687

RESUMO

Plants perceive an assortment of external cues during their life cycle, including abiotic and biotic stressors. Biotic stress from a variety of pathogens, including viruses, oomycetes, fungi, and bacteria, is considered to be a substantial factor hindering plant growth and development. To hijack the host cell's defence machinery, plant pathogens have evolved sophisticated attack strategies mediated by numerous effector proteins. Several studies have indicated that plasmodesmata (PD), symplasmic pores that facilitate cell-to-cell communication between a cell and neighbouring cells, are one of the targets of pathogen effectors. However, in contrast to plant-pathogenic viruses, reports of fungal- and bacterial-encoded effectors that localize to and exploit PD are limited. Surprisingly, a recent study of PD-associated bacterial effectors has shown that a number of bacterial effectors undergo cell-to-cell movement via PD. Here we summarize and highlight recent advances in the study of PD-associated fungal/oomycete/bacterial effectors. We also discuss how pathogen effectors interfere with host defence mechanisms in the context of PD regulation.


Assuntos
Oomicetos , Plasmodesmos , Interações Hospedeiro-Patógeno , Oomicetos/metabolismo , Doenças das Plantas/microbiologia , Plantas/microbiologia , Plasmodesmos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...